ДЕТЕКТОРЫ ЧАСТИЦ: ТИПЫ ДЕТЕКТОРОВ - определение. Что такое ДЕТЕКТОРЫ ЧАСТИЦ: ТИПЫ ДЕТЕКТОРОВ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ДЕТЕКТОРЫ ЧАСТИЦ: ТИПЫ ДЕТЕКТОРОВ - определение

УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ И ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТОМНЫХ И СУБАТОМНЫХ ЧАСТИЦ ВЫСОКОЙ ЭНЕРГИИ
Детекторы ионизирующего излучения; Детекторы элементарных частиц; Трековая камера; Детектор элементарных частиц; Детекторы частиц
  •  Условное изображение многослойного универсального детектора для ускорителя на встречных пучках.
Найдено результатов: 152
ДЕТЕКТОРЫ ЧАСТИЦ: ТИПЫ ДЕТЕКТОРОВ      
К статье ДЕТЕКТОРЫ ЧАСТИЦ
Ионизационные приборы. Действие ионизационной камеры основано на сборе (в форме электрического тока) ионов, образующихся при прохождении через камеру заряженных частиц. Схема прибора представлена на рис. 2. Электрический ток, возникающий в результате ионизации, дается выражением
i = nq/t,
где n - число образовавшихся ионов, q - электрический заряд каждого иона, а t - время, необходимое для того, чтобы собрать ионы. Ток можно преобразовать в падение напряжения, разряжая заряженный им конденсатор или пропуская его через резистор. Ток, создаваемый одной частицей, составляет обычно доли микроампера, а падение напряжения измеряется милливольтами. Полные потери энергии частицы при прохождении ее через камеру даются формулой
E = nk,
где n - число образованных ионов, которое можно определить по току или падению напряжения в камере, а k - средняя энергия, необходимая для образования одной пары ионов. Величина k для обычных газов составляет около 30 эВ (1 эВ есть энергия, которую приобретает электрон, проходя ускоряющую разность потенциалов 1 В.) Образование ионных пар - случайный процесс, а поэтому возможны флуктуации числа n порядка . Все измеренные величины, основанные на показаниях счетчика, тоже будут обнаруживать флуктуации, и поэтому точность таких измерений повышается с увеличением их длительности. .
Основное требование к чувствительному веществу ионизационных приборов состоит в том, чтобы ионы, создаваемые излучением, с большой вероятностью достигали собирающих электродов. Кроме того, это вещество должно обладать высоким удельным сопротивлением, чтобы в нем не было других токов, кроме связанных с ионизацией. Для этих целей хорошо подходят газы, особенно инертные, такие, как гелий и аргон, но можно использовать и другие диэлектрики. Твердотельными аналогами ионизационной камеры являются полупроводниковые детекторы. Подобный прибор с p - n-переходом показан на рис. 3. Для создания перехода в полупроводник (обычно кристалл германия или кремния, по удельному сопротивлению занимающих промежуточное положение между металлами и диэлектриками) вводят небольшие количества определенных примесей. Благодаря этому в области перехода возникает электрическое поле, а при наложении дополнительного внешнего поля образуется обедненная область, в которой отсутствуют свободные носители заряда, необходимые для создания электрического тока. Но если через обедненную область проходит ионизующая частица, в ней возникают свободные носители (электроны и "дырки"), движение которых и создает ток. Средняя энергия, необходимая для образования пары носителей заряда в полупроводниковом детекторе, составляет примерно 3 эВ, тогда как в газовом - 30 эВ. Следовательно, при одинаковых потерях энергии в полупроводниковом детекторе возникает электрический сигнал, в 10 раз превышающий сигнал ионизационной камеры. Соответственно этому возрастает и точность, с которой измеряются потери энергии.
Полупроводниковые детекторы во многом аналогичны полупроводниковым диодам, которые тоже представляют собой полупроводниковые приборы с p - n-переходом. Однако их конструкция имеет свои особенности. Один из широко распространенных типов детекторов, поверхностно-барьерный, изготавливается путем нанесения тонкого слоя золота на кремний или германий. Он имеет вид круглой пластинки диаметром около 1 см с обедненным слоем толщиной менее 1 мм. Такие детекторы применяются для измерения полной энергии сильно ионизующих частиц, например альфа-частиц и протонов с низкой энергией. Благодаря большому сигналу, отвечающему одному акту ионизации, такие приборы измеряют энергию частиц точнее детекторов всех других типов. Кроме того, благодаря небольшим размерам и простоте в обращении они идеально подходят для космических экспериментов.
Еще один тип полупроводникового детектора - литий-дрейфовый детектор с p - i - n-переходом - изготавливается методом диффузии ионов лития в полупроводниковый материал (германий или кремний). Это дает возможность получать обедненные области толщиной в несколько сантиметров и создавать детекторы значительно больших размеров, чем поверхностно-барьерные. Такие детекторы применяются для регистрации частиц с большими энергиями, а также рентгеновского и гамма-излучения, сравнительно слабо взаимодействующего с веществом.
Пропорциональные счетчики и счетчики Гейгера. Серьезным недостатком полупроводниковых детекторов и ионизационных камер является малый ток, создаваемый в них ионизующей частицей. Он настолько мал, что для его измерения необходимы электронные усилители с большими коэффициентами усиления. Но если увеличить высокое напряжение на ионизационной камере, то электроны, возникающие при первичной ионизации, будут приобретать энергию, достаточную для вторичной ионизации, что приведет к увеличению сигнала. Детектор, работающий в таком режиме, называют пропорциональным счетчиком, поскольку импульсы напряжения, снимаемые со счетчика, пропорциональны числу первоначально возникших ионов. Число вторичных ионов, создаваемых в среднем каждым первичным ионом, зависит от напряженности электрического поля в счетчике. В плоскопараллельной камере электрическое поле однородно и его напряженность равна разности потенциалов между пластинами, деленной на расстояние между ними. В такой геометрии трудно получить поля с высокой напряженностью, необходимые для вторичной ионизации. В камерах же с центральной нитью в качестве анода, окруженной цилиндрическим катодом, поле неравномерно и увеличивается вблизи анода. В такой геометрии удается достичь коэффициента усиления в несколько тысяч.
При повышении напряжения на пропорциональном счетчике коэффициент усиления сигнала не возрастает до бесконечности. С какого-то момента сигнал счетчика перестает быть пропорциональным первичной ионизации и ненамного увеличивается с повышением напряжения. Прибор, работающий в таком режиме, называется счетчиком Гейгера. По конструкции он сходен с пропорциональным счетчиком. Более того, можно сконструировать счетчик, который будет работать либо как ионизационная камера, либо как пропорциональный счетчик, либо как счетчик Гейгера в зависимости от напряжения, приложенного между катодом и анодом.
Импульс тока, возникающий в счетчике Гейгера после прохождения заряженной частицы, сходен с электрическим искровым разрядом. Как и в других ионизационных приборах, основной вклад в ток вносят электроны. Присутствующие при этом в больших количествах положительные ионы электрически экранируют анод от катода и тем самым ослабляют поле, действующее на электроны. С увеличением тока экранирование усиливается и достигается насыщение, ограничивающее максимальный ток. Одновременно с насыщением протекает другой процесс - распространение разряда по всему объему счетчика Гейгера. Он обусловлен свечением разряда, свет которого производит в счетчике дополнительную ионизацию за счет фотоэффекта. Повсюду, где происходит фотоионизация, возникает новый разряд. В конечном итоге сигнал уже не зависит от первичной ионизации и может достигать 100 В. Таким образом, разряд усиливает первичный сигнал более чем в миллион раз.
Для гашения разряда в счетчике Гейгера приходится принимать особые меры. Можно уменьшить внешнее напряжение и поддерживать его ниже уровня, при котором возможен устойчивый разряд, пока все ионы не будут выведены из объема счетчика. Более простой способ - ввести в счетчик пар, которые поглощали бы свет, испускаемый разрядом, и рассеивали энергию не за счет фотоэффекта, а, например, за счет диссоциации. Для этого обычно добавляют газообразные галогены (промышленность выпускает, как правило, счетчики именно такого типа). Пропорциональные счетчики можно использовать для измерения низкой энергии излучения, например электронов или рентгеновского излучения. Счетчик Гейгера лишь фиксирует появление частицы. Иначе говоря, при наличии излучений разных видов счетчик Гейгера дает лишь общее число частиц, прошедших через детектор, а пропорциональный счетчик позволяет анализировать излучение по его виду и энергии. Такими же возможностями обладают и полупроводниковые детекторы, а также многие из рассматриваемых ниже детекторов других типов.
Сцинтилляционные и черенковские счетчики. Испускание света некоторыми веществами при прохождении сквозь них быстрых заряженных частиц называют сцинтилляцией. На долю испускаемого света может приходиться 5-10% всей энергии, теряемой частицами. Его испускание - частный случай люминесценции - обусловлено атомной структурой вещества, сквозь которое проходит частица. На регистрации света, испускаемого средой при прохождении через нее частицы, основаны сцинтилляционные счетчики.
В современных сцинтилляционных счетчиках, появившихся примерно в 1947, для регистрации сцинтилляций используются фотоэлектронные умножители (ФЭУ), преобразующие вспышку света в электрический сигнал и одновременно усиливающие этот сигнал. Сцинтилляционный счетчик с ФЭУ схематически изображен на рис. 4.
При выборе сцинтиллирующего вещества встает вопрос о сборе света из кристалла. Известно, что вещества, испускающие свет определенной частоты, поглощают свет той же частоты. Поэтому в очень чистом кристалле сцинтилляционное свечение будет непрерывно поглощаться и вновь испускаться атомами кристалла, пока свет не выйдет наружу через поверхность кристалла или же не будет поглощен в виде тепла. Последнее чаще всего происходит в кристаллах достаточно больших размеров, и по этой причине чистые кристаллы оказываются плохими сцинтилляторами. Ситуация значительно улучшается при введении специальных примесей. Такие активирующие примеси, смещающие длину волны, поглотив свет, испускают его с несколько большей длиной волны, благодаря чему он может выйти наружу. Из неорганических кристаллов обычно используют иодиды натрия и цезия, активированные таллием. Успешно применяются в роли сцинтилляторов также активированные пластмассы и органические жидкости. Типичным примером может служить полистирол, активированный пара-терфенилом. Применяются и некоторые чистые органические кристаллы.
У сцинтилляционных счетчиков имеется ряд преимуществ перед другими детекторами частиц. Твердые и жидкие сцинтилляционные материалы в тысячи раз плотнее газов, используемых в ионизационных счетчиках. Соответственно этому значительно возрастают потери энергии ионизующей частицей на единицу длины и сигнал. Кроме того, ФЭУ обеспечивают такое усиление первичного сигнала, которого не достичь с помощью электронных схем. К тому же длительность сигнала на выходе сцинтилляционного счетчика может составлять всего лишь 10-9 с, тогда как от ионизационной камеры удается в лучшем случае получить сигнал длительностью примерно 10-7 с.
Сигнал на выходе сцинтилляционного счетчика, как и у ионизационных приборов, пропорционален энергии, теряемой падающей частицей в веществе сцинтиллятора. Эта энергия может достигать нескольких сотен мегаэлектронвольт и представлять собой полную кинетическую энергию падающей частицы. Сигнал от счетчика можно также использовать для измерения временнх интервалов между моментами появления разных частиц. Примером может служить измерение среднего времени жизни нестабильных частиц, таких, как ?- или К-мезон. Суть эксперимента - в регистрации временнго интервала между сигналом счетчика, соответствующим попаданию в него мезона, и сигналом, соответствующим появлению продукта распада. Время жизни ?-мезона примерно 25?10-9 с, и для точного его измерения нужен счетчик с гораздо меньшим временем отклика.
Сцинтилляционные счетчики широко применяются в экспериментах с пучками частиц в ускорителях на высокие энергии. Такие пучки обычно состоят из сгустков частиц, и чтобы выделить в этих сгустках отдельные частицы, необходимо высокое "временне разрешение" (малое время отклика), обеспечиваемое сцинтилляционными счетчиками.
Используя в качестве сцинтилляционных материалов обычные органические жидкости и пластмассы, можно изготавливать счетчики практически любых размеров и форм. Для экспериментов с космическими лучами, где потоки частиц крайне малы, создаются гигантские системы детекторов, содержащие тонны чувствительных материалов. Столь же огромное количество вещества используется для регистрации нейтрино, нейтральных частиц, вероятность взаимодействия которых с веществом исключительно мала. В эксперименте может использоваться и система из большого числа отдельных сцинтилляционных счетчиков. В таких случаях они зачастую выполняют ту же роль, что и счетчики Гейгера, т.е. служат индикаторами наличия частиц. Сцинтилляционные счетчики могут работать значительно надежнее счетчиков Гейгера и благодаря своему высокому временнму разрешению точно регистрировать гораздо более интенсивные потоки частиц.
Черенковский счетчик представляет собой детектор, внешне сходный со сцинтилляционным счетчиком. Он регистрирует так называемое черенковское излучение - свечение, испускаемое заряженной частицей, которая движется в среде со скоростью, превышающей скорость света в этой среде. Это явление аналогично ударной волне, возникающей в воздухе, когда снаряд летит быстрее звука. В любой преломляющей среде скорость света равна с/n, где с - скорость света в пустоте (3?108 м/с), а n - показатель преломления среды. Таким образом, в стекле, показатель преломления которого равен 1,5, скорость света составляет всего лишь 2?108 м/c. Любая частица, движущаяся в стекле с большей скоростью, будет испускать черенковское излучение. (Здесь нет противоречия с частной теорией относительности, согласно которой скорость любой частицы, независимо от среды, в которой она движется, не может превышать скорость света в пустоте.) Поэтому черенковский счетчик, чувствительное вещество которого имеет показатель преломления n, будет реагировать на частицы, скорости которых превышают с/n. Интенсивность свечения пропорциональна величине (1 - v2/c2n2), которая равна нулю при пороговом значении скорости с/n и быстро возрастает до максимального значения, когда скорость v регистрируемой частицы приближается к скорости света с. Особенность черенковского излучения состоит в том, что оно сосредоточено в переднем конусе относительно направления движения частицы. Угол при вершине конуса дается выражением
cos. = v/cn.
Используя эту зависимость угла испускания от скорости, можно сконструировать счетчик, на катоде ФЭУ которого будет фокусироваться только излучение частиц, движущихся с определенной скоростью.
Световая вспышка черенковского излучения по интенсивности примерно в 100 раз слабее сцинтилляции. Поэтому при выборе чувствительного вещества для черенковского счетчика приходится ограничиваться материалами, в которых не происходят сцинтилляции. Обычно это вода и оргстекло. Для регистрации частиц со скоростями, приближающимися к скорости света, используются газы, показатель преломления которых очень близок к 1. Например, черенковский счетчик с воздухом при атмосферном давлении будет реагировать лишь на частицы со скоростями не менее 0,9997 с.
Используется и зависимость сигнала черенковских счетчиков от скорости. Появление сигнала свидетельствует о прохождении заряженной частицы со скоростью, превышающей пороговую, а схема с двумя счетчиками позволяет выделить частицы, лежащие в узком интервале скоростей. Это дает возможность исследовать спектр частиц с высокими скоростями, а не только регистрировать их появление. Выходной сигнал сцинтилляционного счетчика, как и любого ионизационного прибора, почти постоянен для всех частиц со скоростями выше 2?108 м/с (0,67 скорости света).
Детекторы нейтронов и гамма-квантов. Ионизационные приборы, сцинтилляционные и черенковские счетчики непосредственно реагируют только на заряженные частицы. Нейтральные же частицы, например нейтроны и гамма-кванты, должны сначала как-то подействовать на вещество, чтобы возникли заряженные частицы, на которые может реагировать счетчик. При взаимодействии гамма-излучения с веществом электроны возникают за счет фотоэффекта, комптон-эффекта или рождения электронно-позитронных пар. Фотоэффект - это процесс, обратный испусканию света: гамма-квант поглощается атомом, из которого вылетает электрон с той же энергией, что и у гамма-кванта, за вычетом энергии связи электрона в атоме. Фотоэффект значителен при энергии гамма-квантов, меньшей примерно 1 МэВ. Комптон-эффект - это рассеяние гамма-квантов на электронах. При этом электрон выбивается из атома и приобретает кинетическую энергию в диапазоне от нуля до почти полной энергии гамма-кванта. Этот процесс играет важную роль в области энергий порядка 1 МэВ и для веществ с малым атомным номером, таких, как углерод. Рождение пар происходит в результате взаимодействия гамма-кванта с сильным электрическим полем вблизи ядра. Полная энергия рождающихся электрона и позитрона (кинетическая энергия + энергия покоя) равна энергии гамма-кванта. Рождение пар не происходит при энергиях ниже 1 МэВ. При более высоких энергиях оно доминирует, особенно в веществах с большими атомными номерами, такими, как свинец.
Главная задача при регистрации гамма-квантов - найти вещество, которое легко поглощало бы их и одновременно было бы чувствительно к испускаемым электронам. Ионизационные приборы сравнительно мало чувствительны к гамма-квантам из-за низкой плотности газового наполнения, хотя в какой-то степени преобразование происходит в стенках счетчика. Наиболее подходящими приборами для регистрации гамма-квантов и измерения их энергии оказались сцинтилляционные счетчики с кристаллами высокой плотности, содержащими элементы с большими атомными номерами. Сравнительно небольшие кристаллы иодида натрия дают почти 100%-ную эффективность регистрации гамма-квантов в широком диапазоне энергий. В равной степени подходят и другие сцинтилляционные материалы. Их выбор обычно зависит от исследуемого излучения. Черенковские счетчики тоже применяются для регистрации гамма-квантов, особенно в области высоких энергий. При этом в качестве черенковских излучателей широко применяются свинцовое стекло и бромоформ.
Нейтроны - незаряженные ядерные частицы, поэтому они взаимодействуют с веществом лишь в прямых столкновениях с ядрами его атомов. При столкновении с ядром водорода (протоном) нейтрон может передать всю свою энергию протону, который, будучи заряженной частицей, может быть зарегистрирован обычным способом. Такой процесс, называемый упругим рассеянием, широко используется для регистрации нейтронов с энергиями, превышающими примерно 0,1 МэВ. Благодаря высокому содержанию водорода сцинтилляционные пластмассы и жидкости пригодны для регистрации нейтронов с эффективностью 10-20%. Иногда под действием нейтронов происходят ядерные реакции с испусканием заряженных частиц или гамма-квантов. Некоторые из таких реакций отличаются исключительно большой вероятностью, особенно при энергиях нейтронов порядка 1 эВ. Примером может служить реакция с бором, сопровождающаяся испусканием альфа-частиц. Поэтому высокую эффективность регистрации нейтронов обеспечивает счетчик Гейгера, наполненный трифторидом бора. Еще один пример такой реакции - деление ядер. Применяются ионизационные камеры с внутренним слоем делящего материала, такого, как уран-235. По большому энерговыделению, характерному для деления ядер, можно выявлять нейтроны на фоне других частиц.
Регистрацию нейтронов часто осложняют трудности отделения нейтронов от гамма-излучения. У детекторов медленных нейтронов эффективность регистрации нейтронов, как правило, гораздо выше, чем для гамма-излучения. Но у используемых для регистрации быстрых нейтронов сцинтилляционных счетчиков эффективность обычно примерно одинакова в обоих случаях. Нейтроны можно отличить по форме регистрируемого импульса, поскольку в случае нейтрона импульс оказывается более широким во времени. Но это различие невелико и для его выявления требуется довольно сложная электроника.
Камеры Вильсона и пузырьковые камеры. При подходящих условиях ионизация, произведенная в веществе заряженной частицей, может вызвать в нем фазовый переход. В так называемой камере Вильсона используется конденсация жидкости из пара. Прибор был изобретен в 1912 Ч.Вильсоном, в течение многих лет исследовавшим физику образования облаков в атмосфере. Вильсон установил, что пересыщенный пар конденсируется в капельки вокруг центров зародышеобразования, которыми служат положительные и отрицательные ионы. Проходя через перенасыщенный пар, заряженная частица оставляет за собой след из капелек. За 1 мс капельки вырастают до видимых размеров.
Пузырьковую камеру изобрел и усовершенствовал в начале 1950-х годов Д.Глейзер. Исходя из аналогии с камерой Вильсона, он нашел иной фазовый переход, который тоже позволяет визуализировать следы частиц. В его приборе используется перегретая жидкость, которая вскипает вблизи центров зародышеобразования, которыми служат ионы. Проходя через такую жидкость, частица оставляет за собой след из пузырьков. Оба эти прибора принесли их создателям Нобелевские премии и дали исследователям возможность почти что "воочию" наблюдать ядерные явления.
Пузырьковые камеры и камеры Вильсона позволяют видеть следы частиц. Это означает, что положение частицы может быть определено с точностью до размера видимой капельки или пузырька, т.е. примерно до 1 мм. Камеры часто помещают в магнитное поле. Это приводит к искривлению траекторий заряженных частиц, обратно пропорциональному их импульсу. При этом положительно заряженные частицы отклоняются в одном направлении, а отрицательно заряженные - в другом. Таким образом, в дополнение к пространственной картине, которую дают эти приборы, они позволяют измерить импульс частицы и определить знак ее заряда.
Ядерные эмульсии. Фотоэмульсии как детекторы частиц в какой-то мере аналогичны камере Вильсона и пузырьковой камере. Впервые их применил английский физик С.Пауэлл для изучения космических лучей. Фотоэмульсия представляет собой слой желатины с диспергированными в ней зернами бромида серебра. Под действием света в зернах бромида серебра образуются центры скрытого изображения, способствующие восстановлению бромида серебра до металлического серебра при проявлении обычным фотографическим проявителем. Физический механизм образования этих центров состоит в образовании атомов металлического серебра за счет фотоэффекта. Ионизация, производимая заряженными частицами, дает такой же результат: возникает след из сенсибилизированных зерен, который после проявления можно видеть под микроскопом. Большие потоки ионизующего и неионизующего излучения вызывают вуалирование эмульсии, видимое простым глазом, как на обычных рентгеновских снимках.
Методика ядерных эмульсий наиболее привлекательна тем, что они довольно компактны. Эмульсии, почти такие же, как и в фотографии, поставляются в виде листков толщиной 0,1 мм. Отдельные листки складывают в стопки нужного объема (характерный размер - порядка десятков сантиметров). После облучения в потоке частиц стопки разделяют на листки для проявления и анализа. Благодаря большой концентрации серебра плотность фотоэмульсий довольно велика, а поэтому потери энергии ионизующих частиц даже на сравнительно небольшом пробеге в эмульсии могут достигать сотен мегаэлектронвольт. Ширина следа частицы составляет лишь несколько микрометров, что позволяет измерять положение частицы с гораздо большей точностью, чем в пузырьковой камере и камере Вильсона. Плотность следа (число почерневших зерен на единицу его длины) прямо пропорциональна ионизации, производимой падающей частицей и, следовательно, зависит от ее скорости. Кроме того, в результате многочисленных столкновений с атомами эмульсии траектория частицы обнаруживает отклонения. По результатам измерения плотности следа и его отклонений можно определить массу частицы, оставившей след, а тем самым идентифицировать ее. Путем таких же измерений можно определить заряд частицы. Так были обнаружены ядра железа с высокой энергией в космических лучах.
Искровые камеры. Искровая камера представляет собой набор параллельных проводящих пластин, разделенных газом и электрически изолированных друг от друга. Заряженная частица, проходящая через камеру, создает ионы в газе между пластинами. Возникающий при этом импульс запускает внешнюю схему, которая подает на чередующиеся пластины импульс высокого напряжения порядка 10 000 В. В момент подачи этого импульса пары пластин камеры действуют как счетчики Гейгера, и в тех местах, где прошла частица, проскакивают искры. Искры хорошо видны (и слышны).
Твердотельные трековые детекторы. Проходя сквозь вещество, частицы могут буквально "расталкивать" атомы на своем пути и оставлять за собой след, видимый в электронном микроскопе. Впервые подобные треки наблюдались в слюде. Эти слабые следы можно выявлять селективно разъедающими материал агрессивными средами. След от частицы возникает, только если она создает на своем пути много ионов. Поэтому такие ядерные частицы, как протоны и альфа-частицы, не оставляют следов. Видимыми будут лишь треки целых ядер (например, ядер железа) и осколков их деления.
Специфика таких детекторов определяется их чувствительностью к очень тяжелым частицам, а также способностью сохранять следы событий, произошедших в далекой древности. Для исследования космических лучей большие листы пластиков поднимают на стратостатах. Таким способом регистрировались ядра урана и других тяжелых элементов, проникающие с первичным космическим излучением в земную атмосферу. Треки в минералах позволяют точно определить их возраст. Этим методом исследовались породы не только земного, но и метеоритного, а также лунного происхождения. См. также УСКОРИТЕЛЬ ЧАСТИЦ; ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ.
ДЕТЕКТОРЫ ЧАСТИЦ         
приборы для регистрации атомных и субатомных частиц. Чтобы частица была зарегистрирована, она должна взаимодействовать с материалом детектора. Простейшие детекторы ("счетчики") регистрируют только сам факт попадания частицы в детектор; более сложные позволяют также определить тип частицы, ее энергию, направление движения и т.д.
Взаимодействие с материалом детектора чаще всего сводится к процессу ионизации - отрыву электронов от некоторых атомов материала детектора, в результате чего они приобретают электрический заряд. Регистрируется либо непосредственно ионизация, либо связанные с ней явления - испускание света, а также фазовые или химические превращения.
Взаимодействие частиц с веществом. Проходя сквозь вещество, частица сталкивается с атомами этого вещества. Число столкновений зависит в основном от электрического заряда и скорости частицы. Масса частицы и природа самого вещества играют лишь второстепенную роль. При каждом столкновении существует некоторая вероятность того, что атом потеряет электрон и превратится в положительно заряженный ион. Поэтому частица, движущаяся в веществе, оставляет за собой след из электронов и положительных ионов. Этот процесс, называемый ионизацией, схематически изображен на рис. 1. Например, очень быстрый протон (скорость которого близка к скорости света) при движении в воде оставляет на каждом сантиметре пути примерно 70 000 пар электронов и положительных ионов. Одновременно с ионизацией атомы при столкновении могут излучать свет или приобретать импульс, что ведет к нагреву вещества и возникновению в нем разного рода дефектов. Любое из этих явлений может использоваться в детекторе частиц.
См. также:
Детектор частиц         
Детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров атомных и субатомных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.
Ускоритель заряженных частиц         
  • Австралийского синхротрона]]
  • Венгрии]] линейного ускорителя. На нём было получено напряжение 1 МВ в 1952 году
  • ИЯФ СО РАН]], [[Новосибирск]]
  • Схема устройства линейного ускорителя частиц
  • Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка
Ускорители заряженных частиц; Ускоритель частиц; Ускоритель элементарных частиц; Ускоритель заряжённых частиц; Электронный линейный ускоритель; Протонный линейный ускоритель; Ускорители
Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Самые крупные ускорители являются дорогостоящими комплексами, требующими международного сотрудничества.
ускоритель заряженных частиц         
  • Австралийского синхротрона]]
  • Венгрии]] линейного ускорителя. На нём было получено напряжение 1 МВ в 1952 году
  • ИЯФ СО РАН]], [[Новосибирск]]
  • Схема устройства линейного ускорителя частиц
  • Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка
Ускорители заряженных частиц; Ускоритель частиц; Ускоритель элементарных частиц; Ускоритель заряжённых частиц; Электронный линейный ускоритель; Протонный линейный ускоритель; Ускорители
устройство, предназначенное для получения пучков заряженных частиц высоких энергий; в медицинской радиологии используется для лучевой терапии и производства определенных радиоактивных нуклидов.
УСКОРИТЕЛЬ ЧАСТИЦ         
  • Австралийского синхротрона]]
  • Венгрии]] линейного ускорителя. На нём было получено напряжение 1 МВ в 1952 году
  • ИЯФ СО РАН]], [[Новосибирск]]
  • Схема устройства линейного ускорителя частиц
  • Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка
Ускорители заряженных частиц; Ускоритель частиц; Ускоритель элементарных частиц; Ускоритель заряжённых частиц; Электронный линейный ускоритель; Протонный линейный ускоритель; Ускорители
установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях - для исследования субъядерных процессов и свойств элементарных частиц (см. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ).
Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.
Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт - это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ . 1,60219?10-19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (1012) электронвольт - на крупнейшем в мире ускорителе.
Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами - энергией и интенсивностью пучка частиц.
В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как "обычные", так и криогенные) и сложные системы юстировки и крепления.
См. также:
Ускорители заряженных частиц         
  • Австралийского синхротрона]]
  • Венгрии]] линейного ускорителя. На нём было получено напряжение 1 МВ в 1952 году
  • ИЯФ СО РАН]], [[Новосибирск]]
  • Схема устройства линейного ускорителя частиц
  • Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка
Ускорители заряженных частиц; Ускоритель частиц; Ускоритель элементарных частиц; Ускоритель заряжённых частиц; Электронный линейный ускоритель; Протонный линейный ускоритель; Ускорители

устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Магнитное поле может лишь изменить направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). Обычно ускоряющее электрическое поле создаётся внешними устройствами (генераторами). Но возможно ускорение с помощью полей, создаваемых др. заряженными частицами; такой метод ускорения называется коллективным (см. Ускорения заряженных частиц коллективные методы). У. з. ч. следует отличать от плазменных ускорителей (См. Плазменные ускорители), в которых происходит ускорение в среднем электрически нейтральных потоков заряженных частиц (плазмы (См. Плазма)).

У. з. ч. - один из основных инструментов современной физики. Ускорители являются источниками как пучков первичных ускоренных заряженных частиц, так и пучков вторичных частиц (мезонов, нейтронов, фотонов и др.), получаемых при взаимодействии первичных ускоренных частиц с веществом. Пучки частиц больших энергий используются для изучения природы и свойств элементарных частиц (См. Элементарные частицы), в ядерной физике, в физике твёрдого тела. Всё большее применение они находят и при исследованиях в др. областях: в химии, биофизике, геофизике. Расширяется значение У. з. ч. различных диапазонов энергий в металлургии - для выявления дефектов деталей и конструкций (дефектоскопия), в деревообделочной промышленности - для быстрой высококачественной обработки изделий, в пищевой промышленности - для стерилизации продуктов, в медицине - для лучевой терапии (См. Лучевая терапия), для "бескровной хирургии" и в ряде др. отраслей.

1. История развития ускорителей Толчком к развитию У. з. ч. послужили исследования строения атомного ядра, требовавшие потоков заряженных частиц высокой энергии. Применявшиеся вначале естественные источники заряженных частиц - радиоактивные элементы - были ограничены как по интенсивности, так и по энергии испускаемых частиц. С момента осуществления первого искусственного превращения ядер (1919, Э. Резерфорд) с помощью потока α-частиц от радиоактивного источника начались поиски способов получения пучков ускоренных частиц.

В начальный период (1919-32) развитие ускорителей шло по пути получения высоких напряжений и их использования для непосредственного ускорения заряженных частиц. В 1931 амер. физиком Р. Ван-де-Граафом был построен электростатический генератор, а в 1932 англ. физики Дж. Кокрофт и Э. Уолтон из лаборатории Резерфорда разработали Каскадный генератор. Эти установки позволили получить потоки ускоренных частиц с энергией порядка миллиона электрон-вольт (Мэв). В 1932 впервые была осуществлена ядерная реакция, возбуждаемая искусственно ускоренными частицами, - расщепление ядра лития протонами.

Период 1931-44 - время зарождения и расцвета резонансного метода ускорения, при котором ускоряемые частицы многократно проходят ускоряющий промежуток, набирая большую энергию даже при умеренном ускоряющем напряжении. Основанные на этом методе циклические ускорители - циклотроны (Э. О. Лоуренс) - вскоре обогнали в своём развитии электростатические ускорители. К концу периода на циклотронах была достигнута энергия протонов порядка 10-20 Мэв. Резонансное ускорение возможно и в линейных ускорителях Однако линейные резонансные ускорители не получили в те годы распространения из-за недостаточного развития радиотехники. В 1940 амер. физик Д. У. Керст реализовал циклический индукционный ускоритель электронов (бетатрон), идея которого ранее уже выдвигалась (амер. физик Дж. Слепян, 1922; швейц. физик Р. Видероэ, 1928).

Разработка ускорителей современного типа началась с 1944, когда сов. физик В. И. Векслер и независимо от него (несколько позже) амер. физик Э. М. Макмиллан открыли механизм автофазировки (См. Автофазировка), действующий в резонансных ускорителях и позволяющий существенно повысить энергию ускоренных частиц. На основе этого принципа были предложены новые типы резонансных ускорителей - синхротрон, фазотрон, синхрофазотрон, микротрон. В это же время развитие радиотехники сделало возможным создание эффективных резонансных линейных ускорителей электронов и тяжёлых заряженных частиц.

В начале 50-х гг. был предложен принцип знакопеременной фокусировки частиц (амер. учёные Н. Кристофилос, 1950; Э. Курант, М. Ливингстон, Х. Снайдер, 1952), существенно повысивший технический предел достижимых энергий в циклических и линейных У. з. ч. В 1956 Векслер опубликовал работу, в которой была выдвинута идея когерентного, или коллективного, метода ускорения частиц.

Последующие два десятилетия можно назвать годами реализации этих идей и технического усовершенствования У. з. ч. Для ускорения электронов более перспективными оказались линейные резонансные ускорители. Крупнейший из них, на 22 Гэв, был запущен в 1966 амер. физиком В. Панофским (США, Станфорд). Для протонов наибольшие энергии достигнуты в синхрофазотронах. В 1957 в СССР (Дубна) был запущен самый крупный для того времени синхрофазотрон - на энергию 10 Гэв. Через несколько лет в Швейцарии и США вступили в строй синхрофазотроны с сильной фокусировкой на 25-30 Гэв, а в 1967 в СССР под Серпуховом - синхрофазотрон на 76 Гэв, который в течение многих лет был крупнейшим в мире. В 1972 в США был создан синхрофазотрон на 200-400 Гэв. В СССР и США разрабатываются проекты ускорителей на 1 000-5 000 Гэв.

Современное развитие ускорителей идёт как по пути увеличения энергии ускоренных частиц, так и по пути наращивания интенсивности (силы тока) и длительности импульса ускоренного пучка, улучшения качества пучка (уменьшения разброса по энергии, поперечным координатам и скоростям). Параллельно с разработкой новых методов ускорения совершенствуются традиционные методы: исследуются возможности применения сверхпроводящих материалов (и соответствующей им техники низких температур) в магнитах и ускоряющих системах, позволяющих резко сократить размеры магнитных систем и энергетические расходы; расширяется область применения методов автоматического управления в ускорителях; ускорители дополняются накопительными кольцами, позволяющими исследовать элементарные взаимодействия во встречных пучках (см. Ускорители на встречных пучках). При этом особое внимание уделяется уменьшению стоимости установок.

II. Классификация ускорителей

У. з. ч. можно классифицировать по разным признакам. По типу ускоряемых частиц различают электронные ускорители, протонные ускорители и ускорители ионов.

По характеру траекторий частиц различают линейные ускорители (точнее, прямолинейные ускорители), в которых траектории частиц близки к прямой линии, и циклические ускорители, в которых траектории частиц близки к окружности (или спирали).

По характеру ускоряющего поля У. з. ч. делят на резонансные ускорители, в которых ускорение производится переменным высокочастотным (ВЧ) электромагнитным полем и для успешного ускорения частицы должны двигаться в резонанс с изменением поля, и нерезонансные ускорители, в которых направление поля за время ускорения не изменяется. Последние в свою очередь делятся на индукционные ускорители, в которых электрическое ускоряющее поле создаётся за счёт изменения магнитного поля (эдс индукции), и высоковольтные ускорители, в которых ускоряющее поле обусловлено непосредственно приложенной разностью потенциалов.

По механизму, обеспечивающему устойчивость движения частиц в перпендикулярных к орбите направлениях (фокусировку), различают ускорители с однородной фокусировкой, в которых фокусирующая сила постоянна вдоль траектории (по крайней мере, по знаку), и ускорители со знакопеременной фокусировкой, в которых фокусирующая сила меняет знак вдоль траектории, т. е. чередуются участки фокусировки и дефокусировки. В применении к некоторым типам циклических ускорителей (синхротрон и синхрофазотрон) вместо терминов "однородная" и "знакопеременная" фокусировка пользуются терминами "слабая" и "сильная" ("жёсткая") фокусировка.

Резонансные циклические ускорители могут быть классифицированы далее по характеру управляющего - "ведущего" - магнитного поля и ускоряющего электрического поля: ускорители с постоянным и с переменным во времени магнитным полем и соответственно ускорители с постоянной и с переменной частотой ускоряющего поля. Приведённая классификация (табл. 1) не охватывает ускорителей со встречными пучками и ускорителей, использующих коллективные методы ускорения. Первый тип является своеобразной разновидностью перечисленных в табл. 1 ускорителей: пучки частиц от ускорителей того или иного типа направляют навстречу друг другу. Второй тип отличается от всей совокупности описанных ускорителей по источнику ускоряющего поля.

Табл. 1. - Классификация ускорителей заряженных частиц

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Тип | Характер | Магнитное | Частота | Фокусировка | Название | Ускоряемые |

| траектории | ускоряющего поля | поле | ускоряющего | | | частицы |

| | | | поля | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Окружность | Циклические ускорители |

| или |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| спираль | Нерезонансный, | Переменное | - | Однородная | Бетатрон | Электроны |

| | индукционный | | | | | |

| |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | Резонансный | Постоянное | Постоянная | " | Циклотрон | Протоны |

| | | | | | Микротрон | (или ионы) |

| | | | | | | Электроны |

| | |-----------------------------------------------------------------------------------------------------------------------------------|

| | | " | " | Знакопеременная | Изохронный | Протоны |

| | | | | | циклотрон | Электроны |

| | | | | | Секторный микротрон | |

| | |-----------------------------------------------------------------------------------------------------------------------------------|

| | | " | Переменная | Однородная | Фазотрон | Протоны |

| | | | | Знакопеременная | Секторный фазотрон | |

| | |-----------------------------------------------------------------------------------------------------------------------------------|

| | | Переменное | Постоянная | Однородная | Синхротрон | Электроны |

| | | | | Знакопеременная | слабофокусирующий | |

| | | | | | Синхротрон | |

| | | | | | сильнофокусирующий | |

| | |-----------------------------------------------------------------------------------------------------------------------------------|

| | | " | Переменная | Однородная | Синхрофазотрон | Протоны |

| | | | | Знакопеременная | слабофокусирующий | |

| | | | | | Синхрофазотрон | |

| | | | | | сильнофокусирующий | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Прямая | Линейные ускорители |

| |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | Hepeзонансный, | - | - | - | Электростатический | Протоны, |

| | электростатический | | | | ускоритель, | электрон ны |

| | | | | | каскадный ускоритель | |

| |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | Нерезонансный, | - | - | - | Линейный | Электроны |

| | индукционный | | | | индукционный | |

| | | | | | ускоритель | |

| |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | Резонансный | - | Постоянная | - | Линейный | Протоны, |

| | | | | | резонансный | электро-i ны |

| | | | | | ускоритель | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

III. Принцип действия резонансных ускорителей

В резонансном ускорителе непрерывное ускорение происходит благодаря тому, что в ускоряющие электроды частица всё время попадает в ускоряющую фазу поля (т. е. когда электрическое поле направлено в сторону движения частиц). Идеальная, т. н. равновесная, частица всё время попадает в одну и ту же фазу - равновесную фазу.

В циклическом ускорителе период обращения Т частицы по орбите связан со средним радиусом орбиты соотношением:

(1)

- скорость частицы). Средний радиус орбиты равен

(2)

где Е = mc2 - полная релятивистская энергия частицы массы m, равная сумме энергии покоя частицы E0 = m0с2 и её кинетической энергии W (m0 - масса покоя частицы, с - скорость света), е - заряд частицы, <В> - среднее значение индукции магнитного поля; поэтому период обращения связан с энергией частицы соотношением:

(3)

Для равновесной частицы период обращения равен или кратен периоду Ту ускоряющего поля. Фиксированным значениям периода обращения и индукции магнитного поля соответствуют вполне определённые равновесная энергия частицы и равновесный радиус её орбиты. Равновесная частица набирает за оборот энергию eV0cos φ0, где φ0 - равновесная фаза, т. е. фаза поля, действующего на равновесную частицу, отсчитываемая от максимума поля, a V0 - амплитуда напряжения на зазоре ускоряющих электродов. Для набора конечной кинетической энергии Wмакс частица должна совершить N = Wмакс /eV0cosφ0 оборотов. В циклических ускорителях длина пути, проходимого частицей, достигает десятков и сотен тысяч км. При столь большой длине пути для успешной работы ускорителя необходимо обеспечить устойчивость равновесного движения: небольшие отклонения частицы по фазе, по энергии, по радиусу и по вертикали, а также небольшие начальные скорости в направлениях, перпендикулярных орбите, не должны приводить к сильному отклонению частицы от равновесной орбиты - частица должна совершать колебательное движение около равновесной частицы. Обеспечение устойчивости движения частицы в направлениях, перпендикулярных орбите (по радиусу и по вертикали), называется фокусировкой, а в направлении орбиты - фазировкой.

В линейном ускорителе протонов (с ускоряющими зазорами) для равновесной частицы время пролёта Т = L/υ между соседними ускоряющими зазорами (L - расстояние между центрами зазоров, υ - скорость частицы) кратно периоду ускоряющего поля Ту = λ/с, где λ - длина волны электромагнитного поля. Энергия Wмакс набирается при прохождении N = Wмакс /eV0cos φ0 ускоряющих зазоров, что определяет требуемую длину ускорителя. Длины современных линейных ускорителей для протонов достигают сотен м. Поэтому и здесь вопрос устойчивости движения, т. е. обеспечения фокусировки и фазировки, является актуальным.

Для того чтобы рассеяние на ядрах атомов газа не приводило к сильному уходу частиц от равновесной траектории и их выпаданию из процесса ускорения, область вокруг равновесной траектории охватывается вакуумной камерой, в которой специальными насосами создаётся достаточно сильное разрежение.

Фазировка в резонансных ускорителях обеспечивается механизмом автофазировки, обусловленным зависимостью промежутка времени между последующими ускорениями от энергии. В циклических ускорителях с однородной фокусировкой период обращения растет с увеличением энергии, т.к. в соотношении (1) средний радиус орбиты растет с возрастанием энергии быстрее, чем скорость частицы. В ускорителях со знакопеременной фокусировкой зависимость среднего радиуса орбиты от энергии значительно слабее; поэтому при малых энергиях период обращения обычно уменьшается с ростом энергии (υ растёт быстрее, чем ), а при больших энергиях - увеличивается с ростом энергии ( растет быстрее, чем υ, которая ограничена скоростью света). При периоде, растущем с энергией, устойчива правая фаза на рис. 1: если частица случайно попадёт в фазу φ1 > φ0, она приобретёт энергию меньше равновесной, поэтому её период обращения станет меньше равновесного, частица отстанет по фазе и, следовательно; её фаза приблизится к равновесной фазе φ0. Если же период уменьшается с ростом энергии, то фаза φ0 становится неустойчивой, а устойчивой будет симметричная ей фаза - φ0. Как бы то ни было, если eV0 достаточно велико, всегда существуют устойчивая равновесная фаза и область близких к ней фаз (область захвата), в пределах которой частицы колеблются около равновесной. Прирост энергии равновесной частицы eV0cos φ0 определяется условием резонанса: T = qTy, где q - целое число, называется кратностью частоты, или кратностью ускорения. Так, для циклического ускорителя энергия равновесной частицы

(3')

где ωy = 2πу - частота ускоряющего поля, так что для увеличения равновесной энергии нужно либо увеличивать магнитное поле (синхротрон), либо уменьшать частоту ускоряющего поля (фазотрон), либо изменять и то и другое (синхрофазотрон), либо, наконец, изменять кратность ускорения q (микротрон). Закон изменения магнитного поля, частоты и кратности ускорения и определяет значение фазы φ0 для равновесной частицы; вследствие автофазировки равновесная частица набирает именно ту энергию, которая определяется соотношением (3'). В соответствии с энергией изменяется радиус равновесной орбиты, определяемый формулой (2).

Для неравновесных частиц, находящихся внутри области захвата, прирост энергии происходит неравномерно, но в среднем они приобретают ту же энергию, что и равновесная частица. Эти частицы "захвачены" в режим ускорения. Частицы, сильно отличающиеся от равновесных по фазе или по энергии, вообще в среднем не будут приобретать энергии, т.к. будут попадать то в ускоряющее, то в замедляющее поле ("скользить по фазе ускоряющего напряжения").

Аналогичный механизм фазировки имеет место и в линейных резонансных ускорителях с той разницей, что там всегда время прохождения расстояний между соседними зазорами уменьшается с ростом энергии, так что устойчивая равновесная фаза всегда равна - φ0.

Фокусировка частиц в ускорителях. В циклических ускорителях фокусировка достигается главным образом специальным подбором формы магнитного поля. Если бы магнитное поле было строго однородно, то при любом отклонении скорости частицы от плоскости орбиты ускоряемая частица уходила бы с равновесной орбиты в направлении оси магнита (по вертикали z). Но если магнитное поле уменьшается с увеличением радиуса, то оно имеет "бочкообразную" форму (это связано с тем, что в отсутствии токов магнитное поле - безвихревое), благодаря чему сила F, действующая на частицу, имеет составляющую Fz по направлению к плоскости равновесной орбиты (рис. 2).

Изменение поля по радиусу принято характеризовать показателем спада поля . Т. о., для устойчивости движения в вертикальном (аксиальном) направлении необходимо выполнение условия n > 0, т. е. чтобы поле убывало с увеличением радиуса. Движение в радиальном направлении определяется соотношением между силой действия на частицу магнитного поля eBυ/c и центростремительной силой mυ2/R, соответствующей радиусу R. На равновесной орбите обе эти величины равны. Если частица с той же скоростью случайно оказалась на большем радиусе, то для обеспечения устойчивости в радиальном направлении нужно, чтобы сила действия магнитного поля на этом радиусе eBυ/c была больше, чем mυ2/R, т. е. чтобы магнитное поле уменьшалось медленее, чем 1/R. Тот же вывод получается, если рассмотреть случайное отклонение частицы в сторону меньших радиусов. Т. о., условие устойчивости в радиальном направлении налагает ограничение на скорость убывания магнитного поля: показатель спада поля n должен быть меньше 1 (n < 1). Для одновременной устойчивости в радиальном и вертикальном направлениях должно выполняться условие:

0 < n < 1. (4)

Можно показать, что силы фокусировки, действующие по радиусу и по вертикали, получаются при этом равными:

FR = - (1-n) m ω2ΔR,

FZ = - n m․ω2Δz, (5)

где m - масса, ω - угловая скорость обращения частицы, ΔR и Δz - отклонения частицы от равновесной орбиты по радиусу и по вертикали. Под действием этих фокусирующих сил частицы совершают колебания (т. н. бетатронные колебания) вокруг равновесной орбиты с частотами:

, (6)

Эти частоты меньше частоты обращения ω, т. е. за оборот частица совершает меньше одного бетатронного колебания. Фокусирующие силы ограничены предельно допустимыми значениями n. Такая фокусировка называется однородной, или слабой.

Для того чтобы увеличить фокусирующую силу по вертикали, надо применить сильно спадающее поле (n > 1). Напротив, для получения большой фокусирующей силы по радиусу надо применить поле с большими отрицательными значениями n (т. е. сильно возрастающее по радиусу). Эти требования одновременно несовместимы. Однако оказывается, что при определённых ограничениях их можно реализовать поочерёдно, обеспечив тем самым сильную фокусировку и по радиусу, и по вертикали. На этом основан принцип знакопеременной фокусировки (рис. 3). Вся длина равновесной орбиты разбивается на большое число одинаковых периодов, в которых устанавливаются магниты, сильно фокусирующие попеременно то по радиусу, то по вертикали. При определённом соотношении между значениями показателя спада магнитного поля, длиной магнитов и числом периодов такая система обладает сильным фокусирующим действием по обоим поперечным направлениям. Физически это объясняется тем, что в фокусирующих магнитах частица оказывается дальше от равновесного положения, чем в дефокусирующих (т.к. предшествующий дефокусирующий магнит отклонил её от орбиты), поэтому действие фокусирующих магнитов сильнее действия дефокусирующих. Частота колебаний частиц при такой фокусировке получается существенно выше частоты обращения, так что за один оборот частица совершает несколько колебаний. Увеличение фокусирующей силы приводит к уменьшению амплитуды колебаний частиц под действием различных раскачивающих факторов, что позволяет уменьшить поперечные размеры вакуумной камеры и магнитов, а следовательно, существенно уменьшить вес и стоимость установки. Поэтому во всех крупных циклических ускорителях на большие энергии применяется знакопеременная (сильная) фокусировка. Неприятная особенность сильной фокусировки - наличие многочисленных резонансов, обусловленных большой частотой колебаний частиц: если число колебаний частицы по вертикали или по радиусу за один полный оборот частицы или их сумма или разность оказываются целыми или полуцелыми числами, то происходит резонансная раскачка колебаний. В связи с этим необходимо предъявлять большие требования к точности изготовления магнитов.

Знакопеременная фокусировка магнитным полем применяется и в линейных ускорителях с той разницей, что на равновесной орбите (прямая) магнитное поле равно нулю. Система фокусировки представляет собой в этом случае набор магнитов (магнитных квадрупольных линз), создающих магнитное поле, равное нулю на оси О системы и линейно нарастающее при отклонении от оси (рис. 4). В одной плоскости магниты фокусируют частицы (сила F направлена к оси), в другой - дефокусируют (F направлена от оси). Эти плоскости фокусировки чередуются от магнита к магниту, что и приводит к знакопеременной фокусировке.

При малых энергиях частиц наряду с магнитной фокусировкой применяется (как в циклических, так и в линейных ускорителях) фокусировка электрическим полем, для чего используется ускоряющее электрическое поле установки. Принцип фокусировки пояснён на рис. 5. В обычном ускоряющем зазоре электрическое поле обычно "провисает" внутрь в центре зазора. Поэтому в первой части зазора оно имеет составляющую, направленную к оси зазора (фокусирующую), во второй - от оси зазора (дефокусирующую). Результирующий фокусирующий эффект получается, если фокусирующее действие оказывается больше дефокусирующего. Поскольку частица, проходя зазор, ускоряется, то во второй части зазора она летит быстрее, т. е. находится там меньшее время, чем в первой, поэтому фокусирующее действие преобладает. Этот эффект, основанный на изменении скорости частицы, называется электростатической фокусировкой. Он имеет заметную величину лишь для малых скоростей частиц, так что его применение в ускорителях ограниченно. Разность действия электрического поля в первой и во второй части зазора может быть обусловлена также изменением электрического поля во времени (электродинамическая фокусировка): если за время пролёта электрическое поле уменьшается, то дефокусирующее действие оказывается меньше фокусирующего. Фокусировка такого типа имеет место в циклотроне и фазотроне как дополнит. фактор к магнитной фокусировке. Однако в линейных ускорителях протонов устойчивой является отрицательная фаза φ0 (см. выше), при которой поле растет со временем. Поэтому в линейных ускорителях электрическое поле дефокусирует и нужны специальные дополнительные меры для фокусировки частиц.

Можно и к электрическому полю применить принцип знакопеременной фокусировки. Например, с помощью электродов сложной формы можно обеспечить изменение знака фокусирующей силы от зазора к зазору или, меняя от зазора к зазору знак равновесной фазы, можно получить систему со знакопеременной фокусировкой и знакопеременной фазировкой. Такие системы были предложены и разработаны, но они имеют весьма ограниченное применение.

При больших интенсивностях ускоряемых пучков начинает сказываться взаимодействие между отдельными частицами пучка; расталкивание по закону Кулона одноимённо заряженных частиц приводит к ослаблению фокусирующих сил. В циклическом У. з. ч. испускаемое частицами электромагнитное излучение (т. н. Синхротронное излучение, см. ниже) также может вызвать неустойчивость движения. В различных ускорителях взаимодействие заряженных частиц сказывается по-разному, но почти всегда именно оно определяет предельно достижимую интенсивность (наряду с ним иногда оказывается определяющей мощность, необходимая для ускорения пучка).

IV. Основные типы современных ускорителей

А. Циклические ускорители

Синхрофазотрон (протонный синхротрон) - циклический резонансный ускоритель протонов с изменяющимся во времени магнитным полем (5) и изменяющейся частотой ускоряющего электрического поля (ωу). При этом ωy и В меняются в строгом соответствии друг с другом, так чтобы радиус равновесной орбиты R оставался постоянным. В синхрофазотроне частота обращения частиц ω = ωy /q и ср. значение магнитной индукции <В> на орбите связаны соотношением:

. (7)

Это условие вытекает из формул (3) и (2). Из формулы (7) видно, что с ростом магнитного поля частота обращения сначала увеличивается пропорционально полю, а затем меняется всё медленнее, приближаясь к предельному значению , отвечающему движению частицы со скоростью света; соответственно должна изменяться частота ускоряющего поля ωу = ωq. Постоянство радиуса равновесной орбиты позволяет сделать магнит синхрофазотрона в виде сравнительно узкого кольца, что сильно удешевляет установку. Из всех современных У. з. ч. синхрофазотроны позволяют получать самые высокие энергии частиц. До 1972 самым большим ускорителем в мире являлся Серпуховский синхрофазотрон (СССР), ускоряющий протоны до энергии 76 Гэв. В 1972 в США (Батейвия) запущен синхрофазотрон на 200 Гэв, в 1975 его энергия была увеличена до 400 Гэв, а в 1976 - до 500 Гэв. В 1976 введён в строй ускоритель на 400 Гэв в Европейском центре ядерных исследований (См. Европейский центр ядерных исследований)(ЦЕРН, близ Женевы). Проектируются синхрофазотроны на 1000 Гэв и выше.

Поскольку предельное значение магнитного поля ограничено техническими возможностями, то, как следует из соотношения (2), увеличение энергии неизбежно сопряжено с увеличением радиуса установки. Для максимальных достигнутых энергий радиус ускорителей составляет сотни м, а в проектируемых ускорителях на сверхвысокие энергии - несколько км. Именно размер установки, а следовательно и её стоимость, ограничивает предельную достижимую энергию в ускорителе. Наименьшая энергия, для получения которой применяют синхрофазотроны, составляет примерно 1 Гэв, для получения протонов меньшей энергии целесообразно применять фазотроны (см. ниже).

Протоны вводятся (инжектируются) в синхрофазотрон извне из др. ускорителя меньшей энергии. Таким предварительным ускорителем служит линейный ускоритель, а иногда также вспомогательный (бустерный) кольцевой ускоритель, для которого, в свою очередь, инжектором служит линейный ускоритель. Такая многоступенчатая схема, повышая энергию инжекции, облегчает условия работы основного ускорителя (легче выдержать допуски на точность воспроизведения магнитного поля при инжекции, в меньшем диапазоне нужно изменять частоту ускоряющего поля) и удешевляет его, а также повышает достижимую в ускорителе интенсивность ускоренного пучка.

В синхрофазотроне со слабой фокусировкой магнитная система состоит из нескольких магнитных секторов (рис. 6), разделённых прямолинейными промежутками. В промежутках располагаются системы ввода, ускоряющие устройства, системы наблюдения за пучком, вакуумные насосы и др. Вводное устройство служит для перевода частиц из инжектора в вакуумную камеру основного ускорителя. Обычно ввод производится с помощью импульсного отклоняющего устройства, электрическое или магнитное поле которого "заворачивает" впускаемые частицы, направляя их по орбите. В вакуумной камере, представляющей собой сплошную замкнутую трубу, охватывающую область вокруг равновесной орбиты, создаётся с помощью непрерывно действующих откачивающих насосов достаточно низкое (Ускорители заряженных частиц10-6 мм рт. ст.) давление, чтобы рассеяние ускоряемых частиц на остаточном газе не приводило к расширению пучка и потере частиц. Закруглённые участки камеры расположены в зазорах между полюсами электромагнитов, создающих внутри камеры магнитное поле, необходимое для управления движением частиц по замкнутой орбите (заворачивания частиц по орбите). Т. к. радиус равновесной орбиты должен оставаться постоянным, необходимо, чтобы магнитное поле росло в процессе ускорения от значения, соответствующего энергии инжекции, до максимального значения, соответствующего конечной энергии. Возрастание магнитного поля осуществляет ся увеличением силы тока, протекающего через обмотки электромагнитов. Форма полюсов магнитов подбирается так, чтобы обеспечить слабое спадание магнитного поля по радиусу в соответствии с условием (4), необходимое для устойчивого движения частиц в поперечном направлении. В одном или нескольких зазорах расположены ускоряющие устройства, создающие переменное электрическое поле. Частота поля изменяется в строгом соответствии с изменением магнитного поля [см. формулу (7)]. Необходимая точность воспроизведения частоты очень велика. Это достигается обычно с помощью системы автоматического слежения за частотой по данным о положении частиц: ошибка в частоте приводит к отходу частиц от равновесного положения, чувствительные датчики регистрируют этот отход, их сигнал усиливается и используется для введения необходимых поправок в частоту.

Под действием ускоряющего поля частицы инжектированного пучка распадаются на сгустки, группирующиеся вокруг устойчивых равновесных фаз. Число таких сгустков, располагающихся по окружности ускорителя, равно кратности ускорения q. В процессе ускорения сгустки сокращаются по длине, сжимаясь к равновесной фазе. Одновременно происходит уменьшение поперечных размеров пучка, который в начале ускорения занимает почти всё сечение вакуумной камеры.

Синхрофазотрон с сильной фокусировкой отличается прежде всего устройством магнитной системы, состоящей из большого числа магнитов, в которых чередуются сильное спадание и сильное нарастание магнитного поля по радиусу. Фокусировка частиц в этом случае значительно сильнее, чем в слабофокусирующем ускорителе. Каждый магнит (рис. 7) осуществляет две функции: заворачивает частицы по орбите и фокусирует их (система с совмещёнными функциями). Применяется также магнитная структура с разделёнными функциями, в которой для заворачивания частиц используются магниты с однородным полем, а фокусировка осуществляется с помощью магнитных квадрупольных линз, расположенных в промежутках между магнитами.

Переход к сильнофокусирующим магнитным системам сопряжён с повышением требований к точности изготовления и монтажа магнитов; при длине кольцевого магнита больше 1 км точность монтажа измеряется десятыми и сотыми долями мм. Это обусловлено большой чувствительностью поведения частиц к различным случайным отклонениям магнитного поля, связанной с резонансной раскачкой пучка. Другая особенность ускорителя с сильной фокусировкой - наличие т. н. критической, или переходной, энергии. При энергии частицы меньше критической устойчивая равновесная фаза расположена на восходящей части кривой напряжения (фаза - φ0 на рис. 1), т.к. с увеличением энергии период уменьшается (как в линейном ускорителе). При энергии частицы больше критической увеличение энергии приводит, напротив, к увеличению периода обращения (как в ускорителе со слабой фокусировкой) и равновесной становится фаза + φ0. Чтобы при прохождении критической энергии не происходили потери пучка, в момент перехода через критическую энергию в систему вводится быстрое смещение фазы колебаний на 2 φ0, так что ускоряемые частицы, которые до критической энергии были сгруппированы вблизи устойчивой фазы - φ0, оказываются в окрестности новой устойчивой фазы + φ0.

Ускоренный в синхрофазотроне пучок либо используется внутри камеры (наводится на внутреннюю мишень), либо выводится из ускорителя отклоняющим устройством того же типа, что и в системе ввода, но более мощным из-за большой скорости частиц. После этого начинается цикл ускорения. Частота следования циклов ускорения в современных синхрофазотронах составляет 5-30 циклов минуту. В каждом цикле ускоряется 1011-1012 частиц. В принципе предельная интенсивность определяется ограничивающим влиянием пространственного заряда.

В связи с тем, что синхрофазотроны на сверхвысокие энергии потребовали бы очень больших размеров и сверхвысокой точности изготовления установки (в частности, магнита), рассматриваются возможности применения сверхпроводящих материалов в электромагнитах ускорителя (что позволяет получить магнитные поля по крайней мере в 3-4 раза выше обычных и во столько же раз сократить размеры установки) и методов автоматического управления параметрами ускорителя (что позволяет ослабить требования к точности его изготовления).

Синхротрон - циклический резонансный ускоритель электронов, отличающийся от синхрофазотрона тем, что в нём изменяется во времени лишь магнитное поле, а частота ускоряющего электрического поля остаётся неизменной. Т. к. при постоянной частоте обращения радиус орбиты пропорционален скорости частиц (R = υ/ω), а для электронов уже при энергии порядка 1 Мэв скорость очень близка к скорости света (т. е. очень слабо меняется с ростом энергии), то радиус равновесной орбиты почти не меняется. Поэтому магнит синхротрона (как и магнит синхрофазотрона) имеет вид кольца. Конструктивно как слабо-, так и сильнофокусирующий синхротроны весьма схожи с синхрофазотроном (поэтому синхрофазотрон и называется также протонным синхротроном). Максимально достижимые в синхротроне энергии определяются в первую очередь электромагнитным излучением релятивистских электронов. Электроны, движущиеся по круговым траекториям, испытывают центростремительное ускорение и, согласно законам электродинамики, должны излучать электромагнитные волны (см. Синхротронное излучение). Излучаемая электроном за 1 оборот энергия равна:

(8)

(E0 = m0c2 - энергия покоя частицы, равная для электрона 0,5 Мэв), т. е. очень быстро растет с увеличением энергии электрона. [В принципе электромагнитное излучение имеет место при движении по окружности любых заряженных частиц, но для тяжёлых частиц (протонов, ядер) E0 много больше, чем для электронов, так что их излучение при достигнутых в ускорителях энергиях не проявляется.] В больших электронных ускорителях энергия, излучаемая за 1 оборот, становится сравнимой с энергией, набираемой частицей. Получаемая электроном от ускоряющего поля энергия eV0 φcos0 расходуется частью на увеличение энергии частицы, а частью на излучение. Излучение сказывается и на колебаниях частиц около равновесной орбиты: с одной стороны, излучение, действуя подобно трению, вносит затухание в колебания частиц, с другой - из-за квантового характера излучения (излучение фотонов) торможение происходит не плавно, а как бы щелчками, что вносит дополнительную раскачку колебаний. Вследствие больших потерь на излучение ускоряющая система должна развивать очень большую мощность. Хотя постоянство частоты обращения позволяет применить резонансные системы с фиксированной частотой, тем не менее именно трудности создания ускоряющей системы ограничивают в первую очередь предельно достижимые энергии. К 1976 в синхротронах достигнуты максимальные энергии порядка 5-10 Гэв (см. табл. 2). Существуют проекты синхротронов на 100-150 Гэв. В синхротронах на меньшие энергии (сотни Мэв) вместо инжекции извне (как в синхрофазотроне) часто применяют бетатронную инжекцию: ускоритель сначала работает как бетатрон (см. ниже), а после достижения электроном релятивистских скоростей (υ ≈ c) включается ускоряющее ВЧ поле и ускоритель переходит на синхротронный режим.

Табл. 2. - Крупнейшие циклические ускорители

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Местонахождение | Максимальная | Диаметр | Сечение | Тип инжектора | Энергия | Год |

| | энергия, Гэв | установки, | камеры, см | | инжекции, | запуска |

| | | м | | | Мэв | |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Синхрофазотроны |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Дубна (СССР) | 10 | 72 | 35×120 | Линейный | 9,4 | 1957 |

| | | | | ускоритель | | |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Аргонн (США) | 12,7 | 55 | 15×82 | то же | 50 | 1963 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Женева (Швейцария) | 28 | 200 | 7×15 | то же | 50 | 1959 |

| | | | | Бустер | 800 | 1972 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Брукхейвен (США) | 33 | 257 | 8×17 | Линейный | 200 | 1960 |

| | | | | ускоритель | | |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Серпухов (СССР) | 76 | 472 | 12×20 | " | 100 | 1967 |

| | | | | (строится бустер) | | |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Батейвия (США) | 500 (на 1976) | 2000 | 5×13 | Бустер | 8000 | 1972 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Синхротроны |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Дарсбери | 5,2 | 70 | (4-6) ´(11- | Линейный | 43 | 1966 |

| (Великобритания) | | | 15) | ускоритель | | |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ереван (СССР) | 6,1 | 69 | 3×10 | то же | 50 | 1967 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Гамбург (ФРГ) | 7,5 | 101 | (4-7) ´(10- | " | 300-500 | 1964 |

| | | | 12) | | | |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Корнелл (США) | 12,2 | 250 | 2,5×5,5 | " | 150 | 1967 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Фазотроны |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Женева (Швейцария) | 0,60 | 5,0 | - | " | - | 1957 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Дубна (СССР) | 0,68 | 6,0 | - | " | - | 1953 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ленинград (СССР) | 1,00 | 6,85 | - | " | - | 1968 |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Фазотрон (синхроциклотрон, циклотрон с вариацией частоты) - третий основной тип резонансных циклических ускорителей, работающих на принципе автофазировки. В фазотроне магнитное поле постоянно во времени, а частота ускоряющего электрического поля меняется. Из соотношения (3') видно, что для увеличения равновесной энергии частоту следует уменьшать. Фазотрон применяется для ускорения тяжёлых частиц (протонов, дейтронов, α-частиц). Крупнейшие современные фазотроны дают протоны с кинетической энергией до 1000 Мэв. В фазотроне частицы движутся по спиральным траекториям от центра, где расположен ионный источник (газовый разряд), к периферии вакуумной камеры (рис. 8). Энергию они приобретают за счёт многократного прохождения ускоряющего зазора. Ускоренные частицы либо используются внутри камеры, либо выводятся наружу с помощью отклоняющих систем. Изменение частоты ускоряющего поля осуществляется с помощью вариатора - конденсатора переменной ёмкости, включенного в резонансный контур. Вследствие того что орбита частицы в фазотроне имеет форму спирали, магнит фазотрона не кольцевой, а сплошной, так что магнитная система весьма громоздка. Именно поэтому при энергиях выше 1 Гэв отдают предпочтение синхрофазотрону, хотя достигаемая в нём интенсивность ускоренного пучка существенно ниже.

В фазотронах с однородным по азимуту магнитным полем фокусировка по вертикали очень слабая, т.к. n < 1. Для её увеличения иногда применяют дополнительные модуляции магнитного поля по азимуту, т. е. используют знакопеременную фокусировку.

Описанные 3 типа резонансных ускорителей, основанных на механизме автофазировки, работают в импульсном режиме: определённая группа захваченных в синхротронный режим частиц повышает свою энергию по мере надлежащего изменения частоты ускоряющего поля и (или) индукции магнитного поля. После достижения максимальной энергии эта группа частиц либо используется внутри камеры, либо выводится из ускорителя; параметры ускорителя возвращаются к исходным значениям, и начинается новый цикл ускорения. Длительность импульса ускорения в синхротронах и фазотронах порядка сотых долей сек, в синхрофазотронах - несколько сек.

Циклотрон - циклический резонансный ускоритель протонов (или ионов), в котором и магнитное поле, и частота ускоряющего электрического поля постоянны. В отличие от ранее описанных ускорителей, циклотрон - ускоритель непрерывного действия. Конструктивно он весьма схож с фазотроном. Частицы из ионного источника непрерывно поступают в вакуумную камеру и ускоряются электродами, двигаясь по спирали. Однако поскольку в циклотроне с однородной фокусировкой ωy и В постоянны во времени, а энергия частиц растет, то условие резонанса (3') нарушается: резонансное ускорение может происходить лишь до тех пор, пока приобретённая кинетическая энергия W много меньше энергии покоя m0с2, т. е. пока не сказывается эффект релятивистского возрастания массы частицы. Это и определяет предел достижимых энергий в циклотроне (для протонов примерно 10-20 Мэв), причём предельная энергия достигается при очень больших значениях напряжения на ускоряющих электродах. Зато циклотрон вследствие работы в непрерывном режиме обладает преимуществом по интенсивности. Магнитное поле в циклотроне очень слабо спадает по радиусу (сильное спадание поля ещё больше усилило бы отклонение от точного резонанса). Поэтому фокусировка магнитным полем в вертикальном направлении очень слабая (n ≈ 0), особенно в центре магнита. Однако в центральной области скорости частиц ещё малы и существенное влияние оказывает фокусировка электрическим полем.

Соблюдение точного резонанса между частицей и ускоряющим полем постоянной частоты можно обеспечить и в циклотроне, если магнитное поле будет расти по радиусу. В ускорителе с однородной фокусировкой это недопустимо из-за неустойчивости движения в вертикальном направлении. Если же использовать знакопеременную фокусировку, то можно реализовать устойчивое ускорение до значительно больших энергий, чем в обычных циклотронах. Такого типа установки (секторные, или изохронные, циклотроны), обладая преимуществом большой интенсивности, свойственным циклотронам, способны давать интенсивные пучки протонов при энергиях до 1000 Мэв. Изохронный циклотрон SIN (Швейцария) даёт протонный ток 12 мка (максимальная энергия ускоренных частиц в циклотроне - 590 Мэв).

Микротрон (электронный циклотрон) - циклический резонансный ускоритель, в котором, как и в циклотроне, и магнитное поле, и частота ускоряющего поля постоянны во времени, но резонансное условие в процессе ускорения всё же сохраняется за счёт изменения кратности ускорения q. Частица обращается в микротроне в однородном магнитном поле, многократно проходя ускоряющий резонатор. В резонаторе она получает такой прирост энергии, что её период обращения изменяется на величину, равную или кратную периоду ускоряющего напряжения. При этом, если частица с самого начала обращалась в резонанс с ускоряющим полем, этот резонанс сохраняется, несмотря на изменение периода обращения. Например, первый оборот частица проходит за один период ускоряющего поля (т. е. q = 1), второй за два (q = 2), третий - за три (q = 3) и т.д. Ясно, что частица попадает при этом в одну и ту же фазу ускоряющего поля. В микротроне действует механизм автофазировки, так что частицы, близкие к равновесной, также будут ускоряться. Микротрон - ускоритель непрерывного действия и способен давать токи порядка 100 ма, максимальная достигнутая энергия порядка 30 Мэв (СССР, Великобритания). Реализация больших энергий затруднительна из-за повышенных требований к точности магнитного поля, а существенное повышение тока ограничено электромагнитным излучением ускоряемых электронов.

Для длительного сохранения резонанса магнитное поле микротрона должно быть однородным. Такое поле не обладает фокусирующими свойствами по вертикали; соответствующая фокусировка производится электрическим полем резонатора. Предлагались варианты микротронов с меняющимся по азимуту магнитным полем (секторный микротрон), но сколько-нибудь значительного развития они пока не получили.

Бетатрон - единственный циклический ускоритель (электронов) нерезонансного типа. Ускорение электронов в бетатроне производится вихревым электрическим полем индукции, создаваемым переменным магнитным потоком, проходящим через сердечник (центральную часть) магнита. Кольцевая вакуумная камера расположена в магнитном зазоре, где с помощью полюсных наконечников сформировано спадающее магнитное поле, обеспечивающее обращение частиц по окружности и фокусировку частиц около среднего равновесного радиуса (см. рис. 9). Для того чтобы радиус орбиты оставался постоянным, между скоростью прироста энергии, определяемой изменением поля в центральной части, и скоростью увеличения заворачивающего магнитного поля должно существовать определённое соотношение (бетатронное условие). Оно сводится к условию:

(9)

и означает, что поле на орбите (Ворб) должно быть в 2 раза меньше среднего поля (Bcp) внутри орбиты. При выполнении этого условия и условия фокусировки (4) будет происходить устойчивое ускорение частиц на орбите постоянного радиуса. Бетатрон - ускоритель импульсного действия и может служить источником электронов до энергии порядка 100-300 Мэв. Однако для энергий выше 100-200 Мэв более удобен синхротрон, не имеющий громоздкого центрального сердечника. Особенно распространены бетатроны на средние энергии - 20-50 Мэв, используемые для различных целей и выпускаемые серийно. Как уже отмечалось, бетатронным режимом ускорения часто пользуются в синхротронах для предварительного ускорения. Т. к. это ускорение производится до небольшой энергии, необходимый для бетатронного ускорения сердечник невелик и существенно не усложняет конструкции синхротрона.

Б. Линейные ускорители

Линейный электростатический ускоритель - см. Ускоритель высоковольтный.

Линейный индукционный ускоритель. В этом У. з. ч. для ускорения используется эдс индукции, возникающая при изменении кольцеобразного магнитного поля. Вдоль оси ускорителя устанавливаются ферромагнитные кольца, охватываемые токовыми обмотками. При резком изменении тока в обмотках происходит быстрое изменение магнитного поля, которое согласно закону электромагнитной индукции создаёт на оси ускорителя электрическое поле Е. Заряженная частица, пролетающая за время существования этого поля вдоль оси, приобретает энергию eEL, где L - пройденное расстояние. Чтобы ускоряющее поле было достаточно велико, нужно быстро изменять магнитное поле, поэтому время существования ускоряющего поля и, следовательно, длительность импульса ускорения невелики (порядка 10-9-10-6 сек). Преимущества линейных индукционных ускорителей - большие значения тока ускоренных частиц (сотни и тысячи а), большая однородность пучка (малый разброс по энергии и малые скорости поперечного движения) и большой кпд, т. е. коэффициент преобразования затрачиваемой в ускоряющей системе энергии в энергию пучка. Существующие линейные индукционные ускорители дают электронные пучки с энергией в несколько Мэв. Они применяются преимущественно как источники интенсивных пучков релятивистских электронов в установках для коллективного ускорения частиц и для исследований по термоядерному синтезу, однако по своим возможностям они допускают значительно более широкое применение.

Линейные резонансные ускорители - наиболее распространённый тип линейных ускорителей, особенно на большие энергии. Линейные резонансные ускорители электронов дают энергии от десятков Мэв до Ускорители заряженных частиц 20 Гэв, протонов - до 800 Мэв. Существ, различие между протонным и электронным линейными ускорителями обусловлено главным образом тем, что протоны ускоряются до нерелятивистских или слаборелятивистских скоростей, тогда как электроны - до ультрарелятивистских скоростей; протонные ускорители на энергии Ускорители заряженных частиц 600-800 Мэв, при которых релятивистские эффекты становятся заметными, конструктивно сближаются с электронными (см. табл. 3).

Табл. 3. - Крупнейшие линейные ускорители

----------------------------------------------------------------------------------------------------------------------------------------------------------------

| Местонахождение | Год | Максимальная | Длина, | Длительность | Максимальный | Максимальный |

| | запуска | энергия, Мэв | м | импульса | средний ток, | ток в |

| | | | | ускоряемых | мка | импульсе, ма |

| | | | | частиц, мксек | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Электронные |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Харьков (СССР) | 1964 | 1800 | 240 | 1,4 | 0,8 | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Станфорд (США) | 1966 | 22300 | 3050 | 1,6 | 48 | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Протонные |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Серпухов (СССР), | 1967 | 100 | 80 | 300 | | 180 |

| инжектор | | | | | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Батейвия (США), | 1970 | 200 | 145 | 400 | | 120 |

| инжектор | | | | | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Лос-Аламос | 1972 | 800 | 795 | 500 | 30 | |

| (США) | | | | | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Мезонная | строится | 600 | 450 | 100 | 500 | |

| фабрика, АН | | | | | | |

| СССР | | | | | | |

----------------------------------------------------------------------------------------------------------------------------------------------------------------

Протонные линейные резонансные ускорители. Идея линейного резонансного ускорителя выдвинута в 1924 швед. учёным Г. Изингом и в 1928 реализована на модели Видероэ. Ускоритель (рис. 10) представляет собой систему пролётных трубок (полых цилиндров), присоединённых через одну к разным полюсам источника переменного напряжения. Электрическое поле не проникает внутрь трубок, а сосредоточено в зазорах между ними. Длина трубок подобрана так, что частицы, попавшие в первый зазор между трубками в момент, когда поле ускоряет частицы, будут и в последующих зазорах попадать в ускоряющую фазу поля (резонанс), т. е. их энергия будет непрерывно повышаться. Ускоритель примерно такого типа был реализован в 1931 Э. О. Лоуренсом и Д. Слоуном (США).

Успехи ВЧ радиотехники в 40-е гг. дали дальнейший толчок, развитию протонных линейных резонансных ускорителей. Вместо цепей с сосредоточенными постоянными в современных ускорителях протонов применяется обычно схема, предложенная амер. физиком Л. Альваресом, представляющая собой резонатор с дрейфовыми трубками. В объёме резонатора цилиндрической формы создаётся переменное электрическое поле, направленное вдоль оси резонатора. Ускоряемые частицы пролетают систему дрейфовых (пролётных) трубок так, что в ускоряющих зазорах между трубками они оказываются в моменты, когда поле направлено по движению частиц (рис. 11). Когда же поле направлено в противоположную сторону, частицы находятся внутри трубок, куда поле не проникает.

В линейном резонансном ускорителе, как было указано выше, действует механизм автофазировки, так что частицы, расположенные в некоторой области вблизи равновесной частицы (область захвата), ускоряются вместе с ней, набирая в среднем такую же энергию. Устойчивая равновесная фаза в линейном ускорителе отрицательна, т. е. находится на участке, где поле растет. Поэтому электрическое поле оказывает в линейном ускорителе дефокусирующее действие и нужно принимать специальные меры для обеспечения фокусировки протонов. В ускорителях на небольшие энергии можно применять фольговую или сеточную фокусировку: входы дрейфовых трубок перекрываются фольговой или сетчатой перегородкой. Это приводит к деформации поля между трубками, при которой дефокусирующая область почти полностью исчезает. В ускорителях на большие энергии этот метод фокусировки неприменим (фольги и сетки приводят к недопустимым потерям интенсивности и, кроме того, перегорают под действием пучка). Наиболее распространённый метод фокусировки - знакопеременная фокусировка с помощью магнитных квадрупольных линз (располагаемых внутри дрейфовых трубок), создающих в окрестности оси ускорителя магнитное поле, линейно нарастающее по мере удаления от оси. Качественно фокусировка таким полем объясняется так же, как в циклических ускорителях.

Преимущество линейных ускорителей над циклическими - отсутствие громоздкой магнитной системы, простота ввода и вывода частиц, большие плотности тока. Однако сложность и высокая стоимость радиотехнической системы линейных ускорителей и трудности фокусировки ограничивают возможности линейных протонных ускорителей. В основном они пока применяются как инжекторы для кольцевых ускорителей. Энергия инжекторов доходит до 50-100 Мэв и даже до 200 Мэв. Это предел, дальше которого система Альвареса становится нерациональной с радиотехнической точки зрения, т.к. слишком большая энергия затрачивается на создание электрического поля (слишком мало шунтовое сопротивление). Для ускорения до больших энергий разработаны специальные системы связанных резонаторов; может также применяться волноводная система с диафрагмами (как в линейных электронных ускорителях; см. ниже). Современные линейные ускорители протонов на большую энергию состоят из двух ступеней: в первой ускорение производится до 100-200 Мэв резонаторами типа Альвареса, во второй - резонаторами иного типа, имеющими при этих скоростях частиц более благоприятные характеристики. По такой двухступенчатой схеме реализован линейный протонный ускоритель в Лос-Аламосе (США) на 800 Мэв, дающий средний ток 30 мка (проектируется повышение тока до 1000 мка), предназначенный для физических опытов с интенсивными вторичными пучками (т. н. мезонная фабрика). По этой же схеме в СССР разработана мезонная фабрика на 600 Мэв.

Электронные линейные резонансные ускорители обладают ещё одним существенным преимуществом над циклическими - в них электроны почти не излучают вследствие практического постоянства их скорости (как по величине, так и по направлению). Предельная энергия современных линейных электронных ускорителей составляет 20 Гэв, но она диктуется только экономическими соображениями и может быть увеличена простым наращиванием длины. Для электронных ускорителей, в которых частицы движутся практически с самого начала со скоростью, близкой к скорости света, наиболее выгодна ускоряющая система в виде диафрагмированного волновода с бегущей волной. В гладком волноводе электромагнитные волны бегут с фазовой скоростью, большей скорости света. Для того чтобы бегущая волна могла ускорять частицы, она должна двигаться с той же скоростью, что и частица, т. е. для ускорения электронов её нужно замедлить до скорости, равной скорости света. Такое замедление достигается, например, введением в волновод перегородок (диафрагм; рис. 12). Близость скорости электронов к скорости света приводит к особенностям в движении электронов относительно ускоряющей волны. Для электронов отсутствует механизм автофазировки: изменение энергии электрона практически не приводит к изменению его скорости и, следовательно, к перемещению относительно ускоряющей волны. Фокусировка в поперечном направлении тоже оказывается, как правило, ненужной, т.к. случайные поперечные скорости электронов убывают по мере роста их энергии (по закону сохранения импульса постоянным остаётся поперечный импульс (, а т.к. по теории относительности масса m растет с ростом энергии, то скорость υ (убывает). Кроме того, поперечное кулоновское расталкивание в электронных ускорителях оказывается почти скомпенсированным магнитным притяжением параллельных токов. Ускоряемые сгустки могут, однако, возбуждать в ускоряющем волноводе паразитные волны, раскачивающие пучок и приводящие к его неустойчивости. Этот эффект особенно существен в больших ускорителях, где он ограничивает предельно достижимые токи. Разработан ряд инженерных методов подавления этого эффекта.

Широко распространены линейные резонансные электронные ускорители на малые (порядка десятков Мэв) энергии, используемые для исследований по ядерной н нейтронной физике и для прикладных целей.

Ведутся интенсивные исследования возможностей применения сверхпроводящих материалов для стенок резонаторов и волноводов в протонных и электронных ускорителях. Это сильно сократило бы расход ВЧ мощности и позволило бы перейти на работу ускорителей в непрерывном режиме.

Описанные типы У. з. ч. применимы для ускорения не только электронов и протонов, но и других заряженных частиц. Электронные ускорители практически без переделок могут быть использованы для ускорения позитронов. Для ускорения тяжёлых частиц используются различные типы протонных ускорителей. Наибольшая энергия ионов достигнута на ускорителе "Бэвалак" (Bevalac, США) типа синхрофазотрона, где в 1974 получены ускоренные ядра вплоть до ядер аргона с энергией 2 Гэв на нуклон. В Дубне разработан проект ускорителя ("нуклотрона"), рассчитанного на получение 16 Гэв на нуклон. Как источник тяжёлых ионов применяются также ускорители типа циклотрона и линейные ускорители.

Лит.: Гринберг А. П., Методы ускорения заряженных частиц, М. - Л., 1950, Ускорители, [сб. статей], пер. с англ. и нем., М., 1962; Коломенский А. А., Лебедев А. Н., Теория циклических ускорителей, М., 1962; Брук Г., Циклические ускорители заряженных частиц, пер. с франц., М 1970; Вальднер О. А., Власов А. Д., Шальнов А. В., Линейные ускорители М., 1969; Комар Е. Г., Основы ускорительной техники, М., 1975; Соколов А. А., Тернов И. М., Релятивистский электрон, М., 1974.

Э. Л. Бурштейн.

Рис. 1. К пояснению механизма автофазировки.

Рис. 2. При "бочкообразной" форме магнитного поля сила F, действующая на отклоненную частицу (1), имеет составляющую Fz, фокусирующую частицу по вертикали; FR - радиальная составляющая F; 2 - полюсные наконечники.

Рис. 3. Схема расположения магнитов в сильнофокусирующем ускорителе: Д - магниты, дефокусирующие по радиусу (n >> 1), Ф - фокусирующие по радиусу (n << -1); пунктирная кривая - орбита неотклонённой частицы (равновесная орбита), сплошная кривая - орбита отклонённой частицы.

Рис. 4. Поле магнитной квадрупольной линзы: N, S - северный и южный полюсы магнита, F - сила действия магнитного поля на частицу, движущуюся перпендикулярно плоскости рисунка (в центре О F = 0).

Рис. 5. Распределение электрического поля в ускоряющем зазоре между электродами А и В; Fx, Fy - продольная и поперечная составляющие силы F, действующей на частицу.

Рис. 6. Схема слабофокусирующего синхротрона или синхрофазотрона: 1 - инжектор; 2 - система ввода; 3 - вакуумная камера; 4 - сектор электромагнита; 5 - прямолинейный промежуток; 6 - ускоряющее устройство. Магнитное поле перпендикулярно плоскости рисунка.

Рис. 7. Схематический разрез магнита ускорителя с сильной фокусировкой: 1 - полюсные наконечники, обеспечивающие сильное изменение магнитного поля В по радиусу; 2 - обмотки электромагнита; 3 - сечение вакуумной камеры.

Рис. 8. Схема движения частиц в циклотроне и фазотроне; магнитное поле перпендикулярно плоскости чертежа. 1 - ионный источник; 2 - орбита ускоряемой частицы (спираль); 3 - ускоряющие электроды; 4 - выводное устройство (отклоняющие пластины); 5 - источник ускоряющего поля.

Рис. 9. Схематический разрез бетатрона: 1 - полюсы магнита; 2 - сечение кольцевой вакуумной камеры; 3 - центральный сердечник; 4 - обмотки электромагнита; 5 - ярмо магнита.

Рис. 10. Схема ускорителя Видероэ с пролётными трубками: 1 - пролётные трубки; 2 - источник переменного напряжения; 3 - область действия электрического поля Е.

Рис. 11. Схематический разрез резонатора (1) линейного ускорителя с дрейфовыми трубками (2). Вблизи оси электрическое поле Е сосредоточено лишь в зазорах между трубками.

Рис. 12. Схематический разрез волновода с диафрагмами (1). Стрелками показано распределение поля, бегущего вдоль волновода; 2 - ускоряемый сгусток электронов.

УСКОРИТЕЛИ         
  • Австралийского синхротрона]]
  • Венгрии]] линейного ускорителя. На нём было получено напряжение 1 МВ в 1952 году
  • ИЯФ СО РАН]], [[Новосибирск]]
  • Схема устройства линейного ускорителя частиц
  • Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка
Ускорители заряженных частиц; Ускоритель частиц; Ускоритель элементарных частиц; Ускоритель заряжённых частиц; Электронный линейный ускоритель; Протонный линейный ускоритель; Ускорители
заряженных частиц , установки для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий с помощью электрического поля. Частицы движутся в вакуумной камере; управление их движением (формой траектории) производится магнитным (реже - электрическим) полем. По характеру траекторий частиц различают циклические и линейные ускорители, а по характеру ускоряющего электрического поля - резонансные и нерезонансные ускорители (последние - индукционные и высоковольтные). К циклическим ускорителям относятся:..1) Ускоритель электронов: бетатрон, микротрон, синхротрон;..2) Ускоритель тяжелых частиц (протонов и др.): циклотрон, фазотрон, синхрофазотрон. Все циклические ускорители, за исключением бетатрона, - резонансные. Линейные высоковольтные ускорители дают интенсивные пучки частиц с энергией до 30 МэВ. Самую высокую энергию электронов дают линейные резонансные ускорители (ок. 20 ГэВ), протонов - протонные синхрофазотроны (УСКОРИТЕЛИ500 ГэВ). Помимо первичных пучков ускоренных заряженных частиц ускорители являются источниками пучков вторичных частиц (мезонов, нейтронов, фотонов и т. д.), получаемых при взаимодействии первичных частиц с веществом. Ускорители - один из основных инструментов современной физики. Пучки частиц высокой энергии используются для исследования природы и свойств элементарных частиц, в физике атомного ядра и твердого тела, а также в дефектоскопии, лучевой терапии и т. д.
---
заряженных частиц , установки для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий с помощью электрического поля. Частицы движутся в вакуумной камере; управление их движением (формой траектории) производится магнитным (реже - электрическим) полем. По характеру траекторий частиц различают циклические и линейные ускорители, а по характеру ускоряющего электрического поля - резонансные и нерезонансные ускорители (последние - индукционные и высоковольтные). К циклическим ускорителям относятся:..1) Ускоритель электронов: бетатрон, микротрон, синхротрон;..2) Ускоритель тяжелых частиц (протонов и др.): циклотрон, фазотрон, синхрофазотрон. Все циклические ускорители, за исключением бетатрона, - резонансные. Линейные высоковольтные ускорители дают интенсивные пучки частиц с энергией до 30 МэВ. Самую высокую энергию электронов дают линейные резонансные ускорители (ок. 20 ГэВ), протонов - протонные синхрофазотроны (УСКОРИТЕЛИ500 ГэВ). Помимо первичных пучков ускоренных заряженных частиц ускорители являются источниками пучков вторичных частиц (мезонов, нейтронов, фотонов и т. д.), получаемых при взаимодействии первичных частиц с веществом. Ускорители - один из основных инструментов современной физики. Пучки частиц высокой энергии используются для исследования природы и свойств элементарных частиц, в физике атомного ядра и твердого тела, а также в дефектоскопии, лучевой терапии и т. д.
Поколение (физика)         
ЧАСТЬ КЛАССИФИКАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ, ОТНОСЯЩАЯСЯ К ФУНДАМЕНТАЛЬНЫМ ФЕРМИОНАМ (КВАРКАМ И ЛЕПТОНАМ)
Поколения элементарных частиц; Поколение (физика элементарных частиц)
В физике элементарных частиц поколение — часть классификации элементарных частиц, относящаяся к фундаментальным фермионам (кваркам и лептонам). Частицы разных поколений отличаются только массой и ароматом; все фундаментальные взаимодействия и квантовые числа идентичны. Согласно Стандартной модели, существует всего три поколения.
Теория многих тел         
Теория многих частиц; Проблема многих тел; Физика многих частиц; Квантовая теория многих частиц
Теория многих тел — область физики, в которой исследуется и описывается коллективное поведение многочастичных систем взаимодействующих частиц. В общих чертах, теория многих тел имеет дело с физическими эффектами и явлениями, которые проявляются только в системах, содержащих большие количества частиц. В то время как основные физические законы, которые управляют движением каждой отдельной частицы, могут быть простыми, исследование коллективов частиц может быть чрезвычайно сложными.

Википедия

Детектор частиц

Детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров атомных и субатомных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.

Что такое ДЕТЕКТОРЫ ЧАСТИЦ: ТИПЫ ДЕТЕКТОРОВ - определение